Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 416: 110661, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457888

RESUMO

Aspergillus flavus and its toxic metabolites-aflatoxins infect and contaminate maize kernels, posing a threat to grain safety and human health. Due to the complexity of microbial growth and metabolic processes, dynamic mechanisms among fungal growth, nutrient depletion of maize kernels and aflatoxin production is still unclear. In this study, visible/near infrared (Vis/NIR) hyperspectral imaging (HSI) combined with the scanning electron microscope (SEM) was used to elucidate the critical organismal interaction at kernel (macro-) and microscopic levels. As kernel damage is the main entrance for fungal invasion, maize kernels with gradually aggravated damages from intact to pierced to halved kernels with A. flavus were cultured for 0-120 h. The spectral fingerprints of the A. flavus-maize kernel complex over time were analyzed with principal components analysis (PCA) of hyperspectral images, where the pseudo-color score maps and the loading plots of the first three PCs were used to investigate the dynamic process of fungal infection and to capture the subtle changes in the complex with different hardness of the maize matrix. The dynamic growth process of A. flavus and the interactions of fungus-maize complexes were explained on a microscopic level using SEM. Specifically, fungus morphology, e.g., hyphae, conidia, and conidiophore (stipe) was accurately captured on the microscopic level, and the interaction process between A. flavus and nutrient loss from the maize kernel tissues (i.e., embryo, and endosperm) was described. Furthermore, the growth stage discrimination models based on PLSDA with the results of CCRC = 100 %, CCRV = 97 %, CCRIV = 93 %, and the prediction models of AFB1 based on PLSR with satisfactory performance (R2C = 0.96, R2V = 0.95, R2IV = 0.93 and RPD = 3.58) were both achieved. In conclusion, the results from both macro-level (Vis/NIR-HSI) and micro-level (SEM) assessments revealed the dynamic organismal interactions in A. flavus-maize kernel complex, and the detailed data could be used for modeling, and quantitative prediction of aflatoxin, which would establish a theoretical foundation for the early detection of fungal or toxin contaminated grains to ensure food security.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Imageamento Hiperespectral , Tecnologia
2.
Toxins (Basel) ; 15(11)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999498

RESUMO

Organic acids and essential oils are commonly used in the poultry industry as antimicrobials and for their beneficial effects on gut health, growth performance, and meat quality. A common postharvest storage fungal colonist, Aspergillus flavus, contaminates corn, the primary component of poultry feed, with the highly detrimental mycotoxin, aflatoxin. Aflatoxin adversely affects poultry feed intake, feed conversion efficiency, weight gain, egg production, fertility, hatchability, and poultry meat yield. Both organic acids and essential oils have been reported to inhibit the growth of A. flavus. Thus, we evaluated if the inhibitory synergy between combined essential oils (cinnamon, lemongrass, and oregano) and organic acids (acetic, butyric, and propionic) prevents A. flavus growth. The study confirmed that these compounds inhibit the growth of A. flavus and that synergistic interactions do occur between some of them. Overall, cinnamon oil was shown to have the highest synergy with all the organic acids tested, requiring 1000 µL/L air of cinnamon oil and 888 mg/kg of butyric acid to fully suppress A. flavus growth on corn kernels. With the strong synergism demonstrated, combining certain essential oils and organic acids offers a potentially effective natural method for controlling postharvest aflatoxin contamination in poultry feed.


Assuntos
Aflatoxinas , Micotoxinas , Óleos Voláteis , Animais , Aspergillus flavus , Óleos Voláteis/farmacologia , Aves Domésticas , Aflatoxinas/análise , Micotoxinas/farmacologia
3.
Food Chem ; 382: 132340, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35139463

RESUMO

The dynamics mechanisms regulating the growth and AFB1 production of Aspergillus flavus during its interactions with maize kernels remain unclear. In this study, shortwave infrared hyperspectral imaging (SWIR-HSI) and synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy were combined to investigate chemical and spatial-temporal changes in incremental damaged maize kernels induced by A. flavus infection at macroscopic and microscopic levels. SWIR-HSI was employed to extract spectral information of A. flavus growth and quantitatively detect AFB1 levels. Satisfactory full-spectrum models and simplified multispectral models were obtained respectively by partial least squares regression (PLSR) for three types of samples. Furthermore, SR-FTIR microspectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) was utilized to reveal the possible sequence of dynamic changes of nutrient loss and trace AFB1 in maize kernels. It exhibited new insights on how to quantify the spatio-temporal patterns of fungal infection and AFB1 accumulation on maize and provided theoretical basis for online sorting.


Assuntos
Aflatoxina B1 , Aspergillus flavus , Imageamento Hiperespectral , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Zea mays/química
4.
J Food Prot ; 85(5): 798-802, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35146522

RESUMO

ABSTRACT: Semicarbazide (SEM) is routinely employed as an indicator for the use of nitrofurazone, a banned antimicrobial. The validity of SEM as a nitrofurazone marker has been scrutinized because of other possible sources of the compound. Nonetheless, a U.S. trade partner rejected skin-on chicken thighs because of SEM detection and suspected nitrofurazone use. Because nitrofurazone has been banned in U.S. broiler production since 2003, we hypothesized that incidental de novo SEM formation occurs during broiler processing. To assess this possibility, raw leg quarters were collected from 23 commercial broiler processing plants across the United States and shipped frozen to our laboratory, where liquid chromatography-mass spectrometry was used to quantitatively assess for SEM. Leg quarter samples were collected at four points along the processing line: hot rehang (transfer from the kill line to the evisceration line), prechill (before the chilling process), postchill (immediately following chilling), and at the point of pack. Thigh meat with skin attached was removed from 535 leg quarters and analyzed in triplicate for SEM concentrations. The concentrations ranged from 0 to 2.67 ppb, with 462 (86.4%) of 535 samples below the regulatory decision level of 0.5 ppb of SEM. The 73 samples over the 0.5-ppb limit came from 21 plants; 53 (72.6%) of positive samples were in meat collected after chilling (postchill or point of pack). The difference in both prevalence and concentration of SEM detected before and after chilling was highly significant (P < 0.0001). These data support our hypothesis that SEM detection in raw broiler meat is related to de novo creation of the chemical during processing.


Assuntos
Galinhas , Nitrofurazona , Animais , Imersão , Carne/análise , Semicarbazidas/análise , Estados Unidos
5.
Front Fungal Biol ; 3: 923112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746160

RESUMO

The important cereal crops of maize, rye, and wheat constitutively produce precursors to 2-benzoxazolinone, a phytochemical having antifungal effects towards many Fusarium species. However, Fusarium verticillioides can tolerate 2-benzoxazolinone by converting it into non-toxic metabolites through the synergism of two previously identified gene clusters, FDB1 and FDB2. Inspired by the induction of these two clusters upon exposure to 2-benzoxazolinone, RNA sequencing experiments were carried out by challenging F. verticillioides individually with 2-benzoxazolinone and three related chemical compounds, 2-oxindole, 2-coumaranone, and chlorzoxazone. These compounds all contain lactam and/or lactone moieties, and transcriptional analysis provided inferences regarding the degradation of such lactams and lactones. Besides induction of FDB1 and FDB2 gene clusters, four additional clusters were identified as induced by 2-benzoxazolinone exposure, including a cluster thought to be responsible for biosynthesis of pyridoxine (vitamin B6), a known antioxidant providing tolerance to reactive oxygen species. Three putative gene clusters were identified as induced by challenging F. verticillioides with 2-oxindole, two with 2-coumaranone, and two with chlorzoxazone. Interestingly, 2-benzoxazolinone and 2-oxindole each induced two specific gene clusters with similar composition of enzymatic functions. Exposure to 2-coumranone elicited the expression of the fusaric acid biosynthetic gene cluster. Another gene cluster that may encode enzymes responsible for degrading intermediate catabolic metabolites with carboxylic ester bonds was induced by 2-benzoxazolinone, 2-oxindole, and chlorzoxazone. Also, the induction of a dehalogenase encoding gene during chlorzoxazone exposure suggested its role in the removal of the chlorine atom. Together, this work identifies genes and putative gene clusters responsive to the 2-benzoxazolinone-like compounds with metabolic inferences. Potential targets for future functional analyses are discussed.

6.
Front Fungal Biol ; 3: 894590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746240

RESUMO

Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.

7.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
8.
PLoS Pathog ; 16(7): e1008595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628727

RESUMO

Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG_11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG_00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.


Assuntos
Acremonium , Fumonisinas/metabolismo , Fusarium/genética , Micoses/microbiologia , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Coinfecção , Resistência à Doença/genética , Genes Fúngicos , Micoses/metabolismo , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia
9.
Fungal Genet Biol ; 128: 60-73, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953838

RESUMO

Horizontal gene transfer (HGT) is believed to shape genomes by facilitating the rapid acquisition of adaptive traits. We hypothesized that the economically important fungus Fusarium verticillioides is an excellent candidate for investigating the potential impact of HGT on the expansion of metabolic activities given its soilborne nature and versatile lifestyle as both a symptomless endophyte as well as a maize pathogen. To test this hypothesis, we used a phylogenomic pipeline followed by manual curation to perform a genome-wide identification of inter-kingdom derived HGT events. We found strong support for 36 genes in F. verticillioides putatively acquired from bacteria. Functional enrichment assessment of these 36 candidates suggested HGT potentially influenced several biochemical activities, including lysine, glycine and nitrogen metabolism. The expression of 25 candidate HGT genes was detected among RNA-Seq datasets from normal and various stress-related growth conditions, thus indicating potential functionality. FVEG_10494, one of the HGT candidates with homologs in only a few Fusarium species, was highly and specifically up-regulated under nitric oxide (NO) challenge. Functional analysis of FVEG_10494 suggests the gene moderately enhanced NO-triggered protective responses and suppressed expression of the F. verticillioides secondary metabolism gene cluster responsible for production of fusarin C. Overall, our global analysis of HGT events in F. verticillioides identified a well-supported set of transferred genes, providing further evidence that HGT offers a mechanism by which fungi can expand their metabolic capabilities, which in turn may enhance their adaptive strategies.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Transferência Genética Horizontal , Genoma Fúngico , Filogenia , Fusarium/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Família Multigênica , Óxido Nítrico/farmacologia , Fenótipo , Metabolismo Secundário , Análise de Sequência de RNA
10.
Phytopathology ; 108(3): 312-326, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28971734

RESUMO

The importance of understanding the biology of the mycotoxigenic fungus Fusarium verticillioides and its various microbial and plant host interactions is critical given its threat to maize, one of the world's most valuable food crops. Disease outbreaks and mycotoxin contamination of grain threaten economic returns and have grave implications for human and animal health and food security. Furthermore, F. verticillioides is a member of a genus of significant phytopathogens and, thus, data regarding its host association, biosynthesis of secondary metabolites, and other metabolic (degradative) capabilities are consequential to both basic and applied research efforts across multiple pathosystems. Notorious among its secondary metabolites are the fumonisin mycotoxins, which cause severe animal diseases and are implicated in human disease. Additionally, studies of these mycotoxins have led to new understandings of F. verticillioides plant pathogenicity and provide tools for research into cellular processes and host-pathogen interaction strategies. This review presents current knowledge regarding several significant lines of F. verticillioides research, including facets of toxin production, virulence, and novel fitness strategies exhibited by this fungus across rhizosphere and plant environments.


Assuntos
Fusarium/fisiologia , Fusarium/patogenicidade , Micotoxinas/metabolismo , Zea mays/microbiologia , Animais , Contaminação de Alimentos , Humanos , Micotoxinas/toxicidade , Doenças das Plantas/microbiologia , Virulência
11.
Mol Plant Pathol ; 19(5): 1127-1139, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802018

RESUMO

Catalase-peroxidases (KatGs) are a superfamily of reactive oxygen species (ROS)-degrading enzymes believed to have been horizontally acquired by ancient Ascomycota from bacteria. Subsequent gene duplication resulted in two KatG paralogues in ascomycetes: the widely distributed intracellular KatG1 group and the phytopathogen-dominated extracellular KatG2 group. To functionally characterize FvCP01 (KatG1) and FvCP02 (KatG2) in the maize pathogen Fusarium verticillioides, single and double gene deletion mutants were examined in response to hydrogen peroxide (H2 O2 ). Both ΔFvCP01 and ΔFvCP02 were more sensitive to H2 O2 than the wild-type in vitro, although their sensitivity differed depending on the type of inoculum. Inoculations using mycelial agar plugs demonstrated an additive effect of the mutants, with the ΔFvCP01/ΔFvCP02 double deletion being the most sensitive to H2 O2 . In general, conidia were much more sensitive than agar plugs to H2 O2 , and conidial inoculations indicated that FvCP01 conferred more H2 O2 tolerance than FvCP02. Transcriptional analysis showed the induction of FvCP01, but decreased expression of FvCP02, in both mycelia and spores in the wild-type after H2 O2 exposure, but this trend was reversed when the fungus was grown on germinating maize seeds. This interaction with the plant increased the expression of FvCP02, but not FvCP01, indicating that FvCP02 may be responsive to plant-derived H2 O2 . Yet, FvCP01 was induced more than three-fold in the ΔFvCP02 mutant grown on germlings, suggesting that FvCP01 can compensate for the loss of FvCP02. Given the differential responses of these two F. verticillioides genes to in vitro versus in planta challenges, a model is proposed to illustrate the differing roles of FvCP01 and FvCP02 in protective responses against H2 O2 -derived oxidative stress.


Assuntos
Catalase/genética , Proteínas Fúngicas/genética , Fusarium/genética , Genes Fúngicos , Peroxidases/genética , Catalase/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos , Zea mays/microbiologia
12.
Front Microbiol ; 8: 1775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28974947

RESUMO

Fungi are absorptive feeders and thus must colonize and ramify through their substrate to survive. In so doing they are in competition, particularly in the soil, with myriad microbes. These microbes use xenobiotic compounds as offensive weapons to compete for nutrition, and fungi must be sufficiently resistant to these xenobiotics. One prominent mechanism of xenobiotic resistance is through production of corresponding degrading enzymes. As typical examples, bacterial ß-lactamases are well known for their ability to degrade and consequently confer resistance to ß-lactam antibiotics, a serious emerging problem in health care. We have identified many fungal genes that putatively encode proteins exhibiting a high degree of similarity to ß-lactamases. However, fungal cell walls are structurally different from the bacterial peptidoglycan target of ß-lactams. This raises the question, why do fungi have lactamases and what are their functions? Previously, we identified and characterized one Fusarium verticillioides lactamase encoding gene (FVEG_08291) that confers resistance to the benzoxazinoid phytoanticipins produced by maize, wheat, and rye. Since benzoxazinoids are γ-lactams with five-membered rings rather than the four-membered ß-lactams, we refer to the predicted enzymes simply as lactamases, rather than ß-lactamases. An overview of fungal genomes suggests a strong positive correlation between environmental niche complexity and the number of fungal lactamase encoding genes, with soil-borne fungi showing dramatic amplification of lactamase encoding genes compared to those fungi found in less biologically complex environments. Remarkably, Fusarium species frequently possess large (>40) numbers of these genes. We hypothesize that many fungal hydrolytic lactamases are responsible for the degradation of plant or microbial xenobiotic lactam compounds. Alignment of protein sequences revealed two conserved patterns resembling bacterial ß-lactamases, specifically those possessing PFAM domains PF00753 or PF00144. Structural predictions of F. verticillioides lactamases also suggested similar catalytic mechanisms to those of their bacterial counterparts. Overall, we present the first in-depth analysis of lactamases in fungi, and discuss their potential relevance to fitness and resistance to antimicrobials in the environment.

13.
J Vis Exp ; (124)2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28654073

RESUMO

Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene's function in the living organism. In this protocol the OSCAR method of precise and rapid deletion plasmid construction is described. OSCAR relies on the cloning system in which a single recombinase reaction is carried out containing the purified PCR-amplified 5' and 3' flanks of the gene of interest and two plasmids, pA-Hyg OSCAR (the marker vector) and pOSCAR (the assembly vector). Confirmation of the correctly assembled deletion vector is carried out by restriction digestion mapping followed by sequencing. Agrobacterium tumefaciens is then used to mediate introduction of the deletion construct into fungal spores (referred to as ATMT). Finally, a PCR assay is described to determine if the deletion construct integrated by homologous or non-homologous recombination, indicating gene deletion or ectopic integration, respectively. This approach has been successfully used for deletion of numerous genes in Verticillium dahliae and in Fusarium verticillioides among other species.


Assuntos
Agrobacterium tumefaciens/genética , Fusarium/genética , Deleção de Genes , Técnicas de Inativação de Genes/métodos , Transformação Genética , Verticillium/genética , Genes Fúngicos , Plasmídeos , Reação em Cadeia da Polimerase , Esporos Fúngicos/genética
14.
Microbiol Res ; 184: 1-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26856448

RESUMO

Sclerotium rolfsii, a destructive soil-borne fungal pathogen causes stem rot of the cultivated peanut, Arachis hypogaea. This study aimed to identify differentially expressed genes associated with peanut resistance and fungal virulence. Four peanut cultivars (A100-32, Georgia Green, GA-07W and York) with increasing resistance levels were inoculated with a virulent S. rolfsii strain to study the early plant-pathogen interaction. 454 sequencing was performed on RNAs from infected tissue collected at 4 days post inoculation, generating 225,793 high-quality reads. Normalized read counts and fold changes were calculated and statistical analysis used to identify differentially expressed genes. Several genes identified as differential in the RNA-seq experiment were selected based on functions of interest and real-time PCR employed to corroborate their differential expression. Expanding the analysis to include all four cultivars revealed a small but interesting set of genes showing colinearity between cultivar resistance and expression levels. This study identified a set of genes possibly related to pathogen response that may be useful marker assisted selection or transgenic disease control strategies. Additionally, a set of differentially expressed genes that have not been functionally characterized in peanut or other plants and warrant additional investigation were identified.


Assuntos
Arachis/microbiologia , Basidiomycota/crescimento & desenvolvimento , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Arachis/imunologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase em Tempo Real
15.
PLoS One ; 11(1): e0147486, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808652

RESUMO

Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-ß-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Família Multigênica/genética , Xenobióticos/farmacologia , Benzoxazóis/farmacologia , Proteínas Fúngicas/genética , Fusarium/genética
16.
Toxins (Basel) ; 7(8): 2985-99, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26251922

RESUMO

Drought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, the objectives of this study were to examine the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the growth of different toxigenic (+) and atoxigenic (-) isolates of Aspergillus flavus and to test whether aflatoxin production affects the H2O2 concentrations that the isolates could survive. Ten isolates were tested: NRRL3357 (+), A9 (+), AF13 (+), Tox4 (+), A1 (-), K49 (-), K54A (-), AF36 (-), and Aflaguard (-); and one A. parasiticus isolate, NRRL2999 (+). These isolates were cultured under a H2O2 gradient ranging from 0 to 50 mM in two different media, aflatoxin-conducive yeast extract-sucrose (YES) and non-conducive yeast extract-peptone (YEP). Fungal growth was inhibited at a high H2O2 concentration, but specific isolates grew well at different H2O2 concentrations. Generally the toxigenic isolates tolerated higher concentrations than did atoxigenic isolates. Increasing H2O2 concentrations in the media resulted in elevated aflatoxin production in toxigenic isolates. In YEP media, the higher concentration of peptone (15%) partially inactivated the H2O2 in the media. In the 1% peptone media, YEP did not affect the H2O2 concentrations that the isolates could survive in comparison with YES media, without aflatoxin production. It is interesting to note that the commercial biocontrol isolates, AF36 (-), and Aflaguard (-), survived at higher levels of stress than other atoxigenic isolates, suggesting that this testing method could potentially be of use in the selection of biocontrol isolates. Further studies will be needed to investigate the mechanisms behind the variability among isolates with regard to their degree of oxidative stress tolerance and the role of aflatoxin production.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Estresse Oxidativo
17.
Mol Plant Microbe Interact ; 28(1): 42-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25226432

RESUMO

Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.


Assuntos
Lacase/genética , Doenças das Plantas/microbiologia , Policetídeo Sintases/genética , Transcriptoma , Ustilago/enzimologia , Zea mays/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Lacase/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Pigmentação , Policetídeo Sintases/metabolismo , Plântula/microbiologia , Deleção de Sequência , Esporos Fúngicos , Ustilago/genética , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Virulência
18.
Mol Plant Microbe Interact ; 28(1): 86-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25208341

RESUMO

Ustilago maydis, causal agent of corn smut, can proliferate saprobically in a yeast form but its infectious filamentous form is an obligate parasite. Previously, we showed that Ust1, the first APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor functionally characterized in the phylum Basidiomycota, controlled morphogenesis and virulence in this species. Here, we further analyzed Ust1 function using multiple experimental approaches and determined that i) Ust1 activity was able to partially reverse stuA− conidiophore defects in Aspergillus nidulans; ii) in U. maydis, normal development and virulence were strongly dependent on precise induction or repression of Ust1 activity; iii) consistent with its role as a transcription factor regulating multiple processes, Ust1 accumulated in the nucleus at various stages of the life cycle; iv) however, it was undetectable at specific stages of pathogenic growth, indicating that Ust1 repression is part of normal development in planta; v) StuA response elements upstream of the ust1 open reading frame exhibited affinity for U. maydis DNA-binding proteins; vi) however, loss of regulated ust1 transcription had minor phenotypic effects; and vii) Ust1 was subject to post-translational phosphorylation but is not a target of cAMP signaling. Thus, the broad functional conservation between Ust1 and Ascomycota APSES proteins does not extend to the mechanisms regulating their activity.


Assuntos
Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ustilago/genética , Zea mays/microbiologia , Aspergillus nidulans/citologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter , Modelos Biológicos , Mutação , Fosforilação , Transporte Proteico , Esporos Fúngicos , Fatores de Transcrição/genética , Ustilago/citologia , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Virulência
20.
Fungal Genet Biol ; 61: 111-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24064149

RESUMO

Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disease progression in this fungus. To test this hypothesis, we studied the function of three U. maydis velvet genes, umv1, umv2 and umv3. Using a gene replacement strategy, deletion mutants were made in all three genes in compatible haploid strains, and additionally for umv1 and umv2 in the solopathogenic strain, SG200. None of the mutants showed novel morphological phenotypes during yeast-like, in vitro growth. However, the Δumv1 mutants failed to induce galls or teliospores in maize. Chlorazol black E staining of leaves infected with Δumv1 dikaryons revealed that the Δumv1 hyphae did not proliferate normally and were blocked developmentally before teliospore formation. The Δumv2 mutants were able to induce galls and teliospores in maize, but were slow to do so and thus reduced in virulence. The Δumv3 mutants were not affected in teliospore formation or disease progression. Complementation of the Δumv1 and Δumv2 mutations in the SG200 background produced disease indices similar to those of SG200. These results indicate that two U. maydis velvet family members, umv1 and umv2, are important for normal teliospore development and disease progression in maize seedlings.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Ustilago/fisiologia , Zea mays/microbiologia , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Doenças das Plantas/microbiologia , Plântula/microbiologia , Ustilago/genética , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...